Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 237
1.
Nat Aging ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38724732

DNA methylation clocks can accurately estimate chronological age and, to some extent, also biological age, yet the process by which age-associated DNA methylation (DNAm) changes are acquired appears to be quasi-stochastic, raising a fundamental question: how much of an epigenetic clock's predictive accuracy could be explained by a stochastic process of DNAm change? Here, using DNAm data from sorted immune cells, we build realistic simulation models, subsequently demonstrating in over 22,770 sorted and whole-blood samples from 25 independent cohorts that approximately 66-75% of the accuracy underpinning Horvath's clock could be driven by a stochastic process. This fraction increases to 90% for the more accurate Zhang's clock, but is lower (63%) for the PhenoAge clock, suggesting that biological aging is reflected by nonstochastic processes. Confirming this, we demonstrate that Horvath's age acceleration in males and PhenoAge's age acceleration in severe coronavirus disease 2019 cases and smokers are not driven by an increased rate of stochastic change but by nonstochastic processes. These results significantly deepen our understanding and interpretation of epigenetic clocks.

2.
Res Sq ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38645021

Background: Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunisations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripharal immune cells from respiratory infection allergy/asthma prone (IAP) infants were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fishers Exact p-value = 0.01). Results: An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPLA), a TLR agonist, partially reversing this signature at a subset of CpGs, suggesting the potential for epigenetic remodelling. Conclusions: This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for furture investigation.

3.
Article En | MEDLINE | ID: mdl-38635834

BACKGROUND: The anti-IgE monoclonal, omalizumab, is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during one year of omalizumab treatment. METHODS: 1-year, open-label, Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 severe (GINA step 4/5) uncontrolled atopic asthmatics (≥2 severe exacerbations in previous year) on high-dose inhaled corticosteroids, long-acting ß-agonists, ± mOCS. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE), and 16-52 weeks, to assess late responses by ≥50% reduction in exacerbations or dose of maintenance oral corticosteroids (mOCS). All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. RESULTS: 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ≥50%, while 57% (37/65) on mOCS reduced their dose by ≥50%. The primary outcome 2, 3-dinor-11-ß-PGF2α, GETE and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five breathomics (GC-MS) and 5 plasma lipid biomarkers strongly predicted the ≥50% reduction in exacerbations (receiver operating characteristic area under the curve (AUC): 0.780 and 0.922, respectively) and early responses (AUC:0.835 and 0.949, respectively). In independent cohorts, the GC-MS biomarkers differentiated between severe and mild asthma. Conclusions This is the first discovery of omics biomarkers that predict improvement to a biologic for asthma. Their prospective validation and development for clinical use is justified. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

4.
medRxiv ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38496582

Despite the high prevalence of neurodevelopmental disorders, there are a lack of clinical studies examining the impact of pregnancy diet on child neurodevelopment. This observational clinical study examined the associations between pregnancy dietary patterns and neurodevelopmental diagnoses, as well as their symptoms, in a prospective cohort of 10-year-old children (n=508). Data-driven dietary patterns were derived from self-reported food frequency questionnaires. An Unhealthy dietary pattern in pregnancy (per SD change) was significantly associated with attention deficit hyperactivity disorder (ADHD) OR 1.66 [1.21 - 2.27], p=0.002 and autism diagnosis OR 2.22 [1.33 - 3.74], p=0.002 and associated symptoms p<0.001. Findings for ADHD were validated in two large (n=656, n=348), independent mother-child cohorts via blood metabolome modelling. Objective metabolite scores, assessed at five timepoints in mothers and children in two independent mother-child cohorts, indicated that the strongest association with ADHD was during early-to mid-pregnancy. These results provide evidence for targeted prenatal dietary interventions to prevent neurodevelopmental disorders in children.

5.
Metabolites ; 14(3)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38535296

Vertical transmission of metabolic constituents from mother to child contributes to the manifestation of disease phenotypes in early life. This study probes the vertical transmission of metabolites from mothers to offspring by utilizing machine learning techniques to differentiate between true mother-child dyads and randomly paired non-dyads. Employing random forests (RF), light gradient boosting machine (LGBM), and logistic regression (Elasticnet) models, we analyzed metabolite concentration discrepancies in mother-child pairs, with maternal plasma sampled at 24 weeks of gestation and children's plasma at 6 months. The propensity of vertical transfer was quantified, reflecting the likelihood of accurate mother-child matching. Our findings were substantiated against an external test set and further verified through statistical tests, while the models were explained using permutation importance and SHapley Additive exPlanations (SHAP). The best model was achieved using RF, while xenobiotics were shown to be highly relevant in transfer. The study reaffirms the transmission of certain metabolites, such as perfluorooctanoic acid (PFOA), but also reveals additional insights into the maternal influence on the child's metabolome. We also discuss the multifaceted nature of vertical transfer. These machine learning-driven insights complement conventional epidemiological findings and offer a novel perspective on using machine learning as a methodology for understanding metabolic interactions.

6.
J Pers Med ; 14(3)2024 Feb 25.
Article En | MEDLINE | ID: mdl-38540988

BACKGROUND: Although inhaled corticosteroids (ICS) are the first-line therapy for patients with persistent asthma, many patients continue to have exacerbations. We developed machine learning models to predict the ICS response in patients with asthma. METHODS: The subjects included asthma patients of European ancestry (n = 1371; 448 children; 916 adults). A genome-wide association study was performed to identify the SNPs associated with ICS response. Using the SNPs identified, two machine learning models were developed to predict ICS response: (1) least absolute shrinkage and selection operator (LASSO) regression and (2) random forest. RESULTS: The LASSO regression model achieved an AUC of 0.71 (95% CI 0.67-0.76; sensitivity: 0.57; specificity: 0.75) in an independent test cohort, and the random forest model achieved an AUC of 0.74 (95% CI 0.70-0.78; sensitivity: 0.70; specificity: 0.68). The genes contributing to the prediction of ICS response included those associated with ICS responses in asthma (TPSAB1, FBXL16), asthma symptoms and severity (ABCA7, CNN2, PTRN3, and BSG/CD147), airway remodeling (ELANE, FSTL3), mucin production (GAL3ST), leukotriene synthesis (GPX4), allergic asthma (ZFPM1, SBNO2), and others. CONCLUSIONS: An accurate risk prediction of ICS response can be obtained using machine learning methods, with the potential to inform personalized treatment decisions. Further studies are needed to examine if the integration of richer phenotype data could improve risk prediction.

7.
Food Chem ; 446: 138744, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38432131

This study introduces a multidisciplinary approach to investigate bioactive food metabolites often overlooked due to their low concentrations. We integrated an in-house food metabolite library (n = 494), a human metabolite library (n = 891) from epidemiological studies, and metabolite pharmacological databases to screen for food metabolites with potential bioactivity. We identified six potential metabolites, including meglutol (3-hydroxy-3-methylglutarate), an understudied low-density lipoprotein (LDL)-lowering compound. We further focused on meglutol as a case study to showcase the range of characterizations achievable with this approach. Green pea tempe was identified to contain the highest meglutol concentration (21.8 ± 4.6 mg/100 g). Furthermore, we identified a significant cross-sectional association between plasma meglutol (per 1-standard deviation) and lower LDL cholesterol in two Hispanic adult cohorts (n = 1,628) (ß [standard error]: -5.5 (1.6) mg/dl, P = 0.0005). These findings highlight how multidisciplinary metabolomics can serve as a systematic tool for discovering and enhancing bioactive metabolites in food, such as meglutol, with potential applications in personalized dietary approaches for disease prevention.


Meglutol , Soy Foods , Humans , Meglutol/metabolism , Meglutol/pharmacology , Cross-Sectional Studies , Indonesia , Metabolomics
8.
EBioMedicine ; 102: 105025, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458111

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Asthma , MicroRNAs , Child , Humans , Cross-Sectional Studies , Lung/metabolism , MicroRNAs/metabolism , Metabolomics
9.
Nat Med ; 30(2): 360-372, 2024 Feb.
Article En | MEDLINE | ID: mdl-38355974

The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.


Longevity , Research Design , Biomarkers , Consensus
10.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Article En | MEDLINE | ID: mdl-38295882

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Asthma , Hypersensitivity , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Hypersensitivity/genetics , Asthma/etiology , Genomics , Proteomics , Metabolomics
11.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38267770

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Lysine , Metabolomics , Child , Female , Pregnancy , Humans , Child, Preschool , Body Mass Index , Reproducibility of Results , Linear Models
12.
Allergy ; 79(2): 404-418, 2024 Feb.
Article En | MEDLINE | ID: mdl-38014461

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Asthma , Sphingolipids , Child , Humans , Sphingolipids/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Ceramides/metabolism , Asthma/etiology , Asthma/genetics , Risk Factors
13.
Ophthalmol Sci ; 4(1): 100357, 2024.
Article En | MEDLINE | ID: mdl-37869026

Purpose: The most widely used classifications of age-related macular degeneration (AMD) and its severity stages still rely on color fundus photographs (CFPs). However, AMD has a wide phenotypic variability that remains poorly understood and is better characterized by OCT. We and others have shown that patients with AMD have a distinct plasma metabolomic profile compared with controls. However, all studies to date have been performed solely based on CFP classifications. This study aimed to assess if plasma metabolomic profiles are associated with OCT features commonly seen in AMD. Design: Prospectively designed, cross-sectional study. Participants: Subjects with a diagnosis of AMD and a control group (> 50 years old) from Boston, United States, and Coimbra, Portugal. Methods: All participants were imaged with CFP, used for AMD staging (Age-Related Eye Disease Study 2 classification scheme), and with spectral domain OCT (Spectralis, Heidelberg). OCT images were graded by 2 independent graders for the presence of characteristic AMD features, according to a predefined protocol. Fasting blood samples were collected for metabolomic profiling (using nontargeted high-resolution mass spectrometry by Metabolon Inc). Analyses were conducted using logistic regression models including the worst eye of each patient (AREDS2 classification) and adjusting for confounding factors. Each cohort (United States and Portugal) was analyzed separately and then results were combined by meta-analyses. False discovery rate (FDR) was used to account for multiple comparisons. Main Outcome Measures: Plasma metabolite levels associated with OCT features. Results: We included data on 468 patients, 374 with AMD and 94 controls, and on 725 named endogenous metabolites. Meta-analysis identified significant associations (FDR < 0.05) between plasma metabolites and 3 OCT features: hyperreflective foci (6), atrophy (6), and ellipsoid zone disruption (3). Most associations were seen with amino acids, and all but 1 metabolite presented specific associations with the OCT features assessed. Conclusions: To our knowledge, we show for the first time that plasma metabolites have associations with specific OCT features seen in AMD. Our results support that the wide spectrum of presentations of AMD likely include different pathophysiologic mechanisms by identifying specific pathways associated with each OCT feature. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

14.
bioRxiv ; 2023 Nov 16.
Article En | MEDLINE | ID: mdl-38014335

Metabolomics has gained much attraction due to its potential to reveal molecular disease mechanisms and present viable biomarkers. In this work we used a panel of untargeted serum metabolomes in 602 childhood patients of the COPSAC2010 mother-child cohort. The annotated part of the metabolome consists of 493 chemical compounds curated using automated procedures. Using predicted quantitative-structure-bioactivity relationships for the Tox21 database on nuclear receptors and stress response in cell lines, we created a filtering method for the vast number of quantified metabolites. The metabolites measured in children's serums used here have predicted potential against the chosen target modelled targets. The targets from Tox21 have been used with quantitative structure-activity relationships (QSARs) and were trained for ~7000 structures, saved as models, and then applied to 493 metabolites to predict their potential bioactivities. The models were selected based on strict accuracy criteria surpassing random effects. After application, 52 metabolites showed potential bioactivity based on structural similarity with known active compounds from the Tox21 set. The filtered compounds were subsequently used and weighted by their bioactive potential to show an association with early childhood hs-CRP levels at six months in a linear model supporting a physiological adverse effect on systemic low-grade inflammation. The significant metabolites were reported.

16.
Psychol Assess ; 35(11): 1054-1067, 2023 Nov.
Article En | MEDLINE | ID: mdl-37902671

To assess the public health impact of the COVID-19 pandemic on mental health, investigators from the National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) research program developed the Pandemic-Related Traumatic Stress Scale (PTSS). Based on the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) acute stress disorder symptom criteria, the PTSS is designed for adolescent (13-21 years) and adult self-report and caregiver-report on 3-12-year-olds. To evaluate psychometric properties, we used PTSS data collected between April 2020 and August 2021 from non-pregnant adult caregivers (n = 11,483), pregnant/postpartum individuals (n = 1,656), adolescents (n = 1,795), and caregivers reporting on 3-12-year-olds (n = 2,896). We used Mokken scale analysis to examine unidimensionality and reliability, Pearson correlations to evaluate relationships with other relevant variables, and analyses of variance to identify regional, age, and sex differences. Mokken analysis resulted in a moderately strong, unidimensional scale that retained nine of the original 10 items. We detected small to moderate positive associations with depression, anxiety, and general stress, and negative associations with life satisfaction. Adult caregivers had the highest PTSS scores, followed by adolescents, pregnant/postpartum individuals, and children. Caregivers of younger children, females, and older youth had higher PTSS scores compared to caregivers of older children, males, and younger youth, respectively. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Anxiety , Pandemics , United States/epidemiology , Adolescent , Pregnancy , Humans , Adult , Child , Female , Male , Psychometrics , Reproducibility of Results , Anxiety Disorders
17.
bioRxiv ; 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37904959

Biological aging is a multifactorial process involving complex interactions of cellular and biochemical processes that is reflected in omic profiles. Using common clinical laboratory measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality risk and can be broadly recapitulated across EMRs. We then applied elastic-net regression to model EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge and OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections central to the aging process.

18.
EBioMedicine ; 96: 104791, 2023 Oct.
Article En | MEDLINE | ID: mdl-37734204

BACKGROUND: As new infectious diseases (ID) emerge and others continue to mutate, there remains an imminent threat, especially for vulnerable individuals. Yet no generalizable framework exists to identify the at-risk group prior to infection. Metabolomics has the advantage of capturing the existing physiologic state, unobserved via current clinical measures. Furthermore, metabolomics profiling during acute disease can be influenced by confounding factors such as indications, medical treatments, and lifestyles. METHODS: We employed metabolomic profiling to cluster infection-free individuals and assessed their relationship with COVID severity and influenza incidence/recurrence. FINDINGS: We identified a metabolomic susceptibility endotype that was strongly associated with both severe COVID (ORICUadmission = 6.7, p-value = 1.2 × 10-08, ORmortality = 4.7, p-value = 1.6 × 10-04) and influenza (ORincidence = 2.9; p-values = 2.2 × 10-4, ßrecurrence = 1.03; p-value = 5.1 × 10-3). We observed similar severity associations when recapitulating this susceptibility endotype using metabolomics from individuals during and after acute COVID infection. We demonstrate the value of using metabolomic endotyping to identify a metabolically susceptible group for two-and potentially more-IDs that are driven by increases in specific amino acids, including microbial-related metabolites such as tryptophan, bile acids, histidine, polyamine, phenylalanine, and tyrosine metabolism, as well as carbohydrates involved in glycolysis. INTERPRETATIONS: These metabolites may be identified prior to infection to enable protective measures for these individuals. FUNDING: The Longitudinal EMR and Omics COVID-19 Cohort (LEOCC) and metabolomic profiling were supported by the National Heart, Lung, and Blood Institute and the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health.


COVID-19 , Communicable Diseases , Influenza, Human , Humans , Metabolome , Prospective Studies , Influenza, Human/epidemiology , Metabolomics , Communicable Diseases/etiology
19.
Invest Ophthalmol Vis Sci ; 64(11): 11, 2023 08 01.
Article En | MEDLINE | ID: mdl-37552033

Purpose: The purpose of this study was to assess metabolites associated with intraocular pressure (IOP) and inner retina structure. Methods: We cross-sectionally assessed 168 non-fasting plasma metabolites measured by nuclear magnetic resonance (NMR) spectroscopy with IOP (n = 28,195), macular retinal nerve fiber layer thickness (mRNFL; n = 10,584), and macular ganglion cell inner plexiform layer thickness (mGCIPL; n = 10,554) in the UK Biobank. We used multiple linear regression models adjusting for various covariates with probit-transformed metabolite levels as predictors for each outcome. Each estimate represents the difference in outcome variable per standard deviation increase in the probit-transformed metabolite values. We used the number of effective (NEF) tests and false discovery rate (FDR) to adjust for multiple comparisons for metabolites and metabolite classes, respectively. Results: In individual metabolite analysis, multiple amino acids, especially branched-chain amino acids, were associated with lower IOP (-0.12 mm Hg; 95% confidence interval = -0.16 to -0.07; NEF = 2.7E-05). Albumin, 3 hydroxybutyrate, lactate, and several lipids were associated with higher IOP (range = 0.07 to 0.18 mm Hg, NEF = ≤ 0.039). In IOP-adjusted analyses, five HDL-related metabolites were associated with thinner mRNFL (-0.15 microns for all metabolites, NEF = ≤ 0.027), whereas five LDL-related metabolites were associated with thicker mGCIPL (range = 0.17 to 0.20 microns; NEF = ≤ 0.044). In metabolite class analysis, the lipid components of lipoproteins (cholesterol, triglycerides, etc.) were not associated with our outcomes (FDR > 0.2 for all); yet multiple lipoproteins were significantly (FDR < 0.05) associated with all outcomes. Conclusions: Branched-chain amino acids were associated with lower IOP, HDL metabolites were associated with thinner mRNFL, and LDL metabolites were associated with thicker mGCIPL.


Biological Specimen Banks , Intraocular Pressure , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Retina/diagnostic imaging , Tomography, Optical Coherence/methods , United Kingdom , Lipids
20.
J Allergy Clin Immunol ; 152(6): 1423-1432, 2023 12.
Article En | MEDLINE | ID: mdl-37595761

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) have distinct and overlapping genetic and clinical features. OBJECTIVE: We sought to test the hypothesis that polygenic risk scores (PRSs) for asthma (PRSAsthma) and spirometry (FEV1 and FEV1/forced vital capacity; PRSspiro) would demonstrate differential associations with asthma, COPD, and asthma-COPD overlap (ACO). METHODS: We developed and tested 2 asthma PRSs and applied the higher performing PRSAsthma and a previously published PRSspiro to research (Genetic Epidemiology of COPD study and Childhood Asthma Management Program, with spirometry) and electronic health record-based (Mass General Brigham Biobank and Genetic Epidemiology Research on Adult Health and Aging [GERA]) studies. We assessed the association of PRSs with COPD and asthma using modified random-effects and binary-effects meta-analyses, and ACO and asthma exacerbations in specific cohorts. Models were adjusted for confounders and genetic ancestry. RESULTS: In meta-analyses of 102,477 participants, the PRSAsthma (odds ratio [OR] per SD, 1.16 [95% CI, 1.14-1.19]) and PRSspiro (OR per SD, 1.19 [95% CI, 1.17-1.22]) both predicted asthma, whereas the PRSspiro predicted COPD (OR per SD, 1.25 [95% CI, 1.21-1.30]). However, results differed by cohort. The PRSspiro was not associated with COPD in GERA and Mass General Brigham Biobank. In the Genetic Epidemiology of COPD study, the PRSAsthma (OR per SD: Whites, 1.3; African Americans, 1.2) and PRSspiro (OR per SD: Whites, 2.2; African Americans, 1.6) were both associated with ACO. In GERA, the PRSAsthma was associated with asthma exacerbations (OR, 1.18) in Whites; the PRSspiro was associated with asthma exacerbations in White, LatinX, and East Asian participants. CONCLUSIONS: PRSs for asthma and spirometry are both associated with ACO and asthma exacerbations. Genetic prediction performance differs in research versus electronic health record-based cohorts.


Asthma , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Child , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Asthma/epidemiology , Asthma/genetics , Vital Capacity , Respiratory Function Tests , Forced Expiratory Volume
...